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ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF ELASTICITY THEORY PROBLEM
FOR SHELL OF POSITIVE CURVATURE AND SMALL THICKNESS

N.A. BAZARENKO

The state of stress and strain of a shell of positive curvature with one edge sub-
jected to the effect of a sufficiently smooth load applied to the endface surface is
studied. The case is investigated when the shell thickness is slight. It is proved
that the shell state of stress consists of three parts: 1) the internal state of
stress that does not possess the property of decay and encloses all domains of the
shell body, 2) the slowly decaying state of stress (simple edge effect of shells),
and 3) the rapidly decaying state of stress of boundary-layer type. Asymptotic ex-
pansions are presented for the components of states of stress and strain of the types
1}, 2) and 3). Boundary conditions are formulated for each part of the solution
constructed. A system of "two-dimensional" equations of the refined applied theory
of shells is obtained on the basis of the solution of a three-dimensional problem of
elasticity theory.

1. Initial equations. Let V be the domain of space filled with shell material, R is
the radius-vector of a running point in this domain, § is the shell middle surface, r =r (&, f)
is some orthogonal parametrization of this surface, m is the normal direction to the surface

S. Then the transformation equation R =r + nt yields a semi-orthogonal curvilinear co-
ordinate system %, 2%, z* in the domain V (ax =z, p = 2% t = 2%).

We introduce an orthonormal cocrdinate basis (i, i,, i3), where 1, i; are the tangent direc-
tions to the coordinate lines #% 2*® while i, =i, X i3 is the normal direction to the coordin-
ate surface z' = const. We denote the stress tensor components by 0™ and the coordinates of
the displacement vector by wu,* in this reference system. We take the elasticity theory equa-
tions in a semi-orthogonal coordinate system obtained in /1/, and represented as follows

(ul’*)tl =03, — gpup* . 6pzouq* — DPyg* (ps=q= 1’2) (1.1)

(@s*)y = e (&1 + Co) ua™ — 0 (u*, ug*)] — f1045
(03p)t" = (§g -+ 2Lp) T3p -+ 8520054 — 2g18,u,* +
((‘Sq — 1) D®(uz,* — uy*) + DP (035 — cgd*) + 2 (20D7 — CqDP) ug™
(03)s" == 2 (L1 + L2) (033 — f68%) — 0 (031, 030) — 4gugous* -+
2(EeD* — 20D® + 2022 + 21ln) wi* - 2 (51D% — 2oD+ 202y + zpEo)us*
Opp == 2(DPup® + z,u* — L us™ - f50%)
O1s = (D' — 2;) up* + (D* — z,) uy* — 2z5uq*
0% = 035 + 2 [0 (uy*, we*) — (&, + %) us*l, 0 (wy, wy) =
(D4 23) wy 4 (D* -+ z,) w,
D' = V gulg 0/00 — (g1:/V 88x) 9/9B, D* = (1/V gz) 0/0B,
8, = 1+ (—1)
g = det|l gixll. g5 = Eplld — kpt), 0 = ap*fp, 20 = (1 — v)!
Crs =1+ 1) n— 34582, c0s =f5, 15 = ¢5(r, s = 0, 1, 2, ... 9)
as the initial relations.
Here g, are the metric tensor components, k; and k, are the principal curvatures of the
surface S, p is the shear modulus, and v is the Poisson's ratio. The functions 2z, and Cp
satisfy the Gauss —Peterson—Codazzi equations

DL p— DPzy = 2202, -+ 2(Le—Lp)y &182=—22—27— Dz — D%, (1.2)
Co)e" =Cp% (20, — 1) 20%,  (2p)' =280 + Y2 (5,00 — 6,D7L,)
(o) = 2205, G+ Ly =81 + &0 2% = Gile — 818 (p¥£q¢=1,2)
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The relationships

(D) =T, D7 4 D, (D) |y = A,00027 =3, % (1.3)
(Z0) [t=g = M Ay A =m
(DP -4 2y D" = (D - 2) D?, (Cp) |t = Ap*Bp=kpp
(zp) limg=—8p*In A, = k,*
by = kg, ko =kpo Ay = VVE, Ay =1V G, B, =L, B, = N
H =g - kg = ky 4+ koy m* = kokpy — Kby (p2q=1,2)
hold together with (1.2).
Here k,, and (—1)’k,* are, respectively, the normal and geodesic curvatures of the co-
ordinate line 2?= const on the middle surface, (—1)¥m is the geodesic torsion of the surface
S in the direction of this same line, and E, G, L, M, N are coefficients of the first and
second quadratic forms.

Integrating (l.l) by using power series in the coordinate ¢, and using the relationships
(1.2) and (L.3) here, as well as the symbolic writing of A.I. Lur'e /2,3/, we obtain

wr = DA Brs) 0= 3 (At Bl ) (1.4)
§= S=0
0’3;.-:0;‘»—1'— 2 ts(Agkvsu]A’*B:J;k‘soj) (p,q=1,2) (1-5)
§=1
Here A;’;‘s, C e B]z'.k,s are known differential operators /1/, u; = u;*{a, B, 0) and o; = oy; (@,

B, 0) are the displacement and stress on the middle surface for ¢ = 0.

It can be shown that all the coefficients A4}, u; are expressed in terms of the quantit-
ies & o = {&; &, 0} and %, T = {®;, %, T} are respectively the components of the tangential and
bending strains of the middle surface /4/

A=ty =2(coep + csey), Ab =0 (p¥g=12) (1.6)
App ity ==mpy + (28, — 1) mw + kppty

zl{z,luj =2t + Ho + m(ts - 2¢,)

Alp st = Ly (1, 0) = ¥ty — (0 + 5% 1y — (0% -+ 2kgM) o

my, = 2 {cgky +- Ca%y)

Ay s = Lyft, ©) = — kot — kgty — 2mow, my + my== hegm*

Ay, iy = T (%, 7) -+ T (e, ),
Mpp == Cakgqm* - kppmy + (48, — 2) mt

My, = Ht + m (cem* 4+ my — my), llg, = — cedp*m*, I3 = — cem*

The coordinate system «, f, ¢ is used to study the internal, thin-shell state of stress
varying smoothly in the domain V. BAnother part of the state of stress, localized in the
boundary-layer zone and decaying exponentially with distance from the shell edge, is invest-
igated in a system of local semi-geodesic coordinates =n,s,t To this end, orthogonal semi-
geodesic parametrization ¢ = r(n, s) is introduced on the middle surface, whose single egde
is determined by a regular closed line I, so that the family of coordinate lines 8 = const
will consist of geodesics perpendicular to I'. The line I' is here determined by the equa-
tion n = 0, and the coordinate s is its natural parameter.

Furthermore, to indicate in which coordinate system the components oy, 4, etc. have
been obtained, we rename them by replacing the superscipts 1 and 2 by appropriate letters.

2. Internal state of stress and strain. Let I, and I, be parts of the shell sur-
face given by { = 41 and n = 0, respectively ({ = t/h, where h is half the shell thickness) .
Let us extract the homogeneous solutions out of (1.4) and (1.5), i.e., solutions which keep
the boundary T, stress-free

g5; =0 as {=+1(=1,2,3) (2.1)
and permit satisfaction of the boundary conditions on the endface surface T,
Onn* = @% O = 6*  Ons* = % as n =10 (2.2)
where g¢;* = pg; (s, {) are coordinates of the external force intensity vector.

Taking account of (1.5), we write the system (2.1) thus:

0; - S R (4d pu; - Bli20) =0 (2.3)

s=1



349

B2 (AL gt + Bhi an105) =0 (i=1,2,3) (2.4)

13

$:

0

We shall seek the undamped solution of the singularly-perturbed system presented above,
as h—>0. 1In this case the operators A4 . and B , applied to the functions u;and o; do
not change their order of smallness in h, while the stresses ¢; admit of asymptotic expansion:

0; = 05,0 + R0y, + hlosy 4 . (=1, 2,3) (2.5)

Substituting (2.5) into (2.3) and equating the expression for A% (¢ =0, 1,2...) to zero,
we obtain a system of recursion equations in the unknowns o¢;,(r=20,1,2,...). We hence find
0 = — RAAL uy — B gty + ... (j=1,2,3) (2.6)
Chymrt = ASjm — Bl A5 (myr, 1=0,1,2,...,9)

Eliminating the stress o; from (1.4), (1.5) and (2.4) by using (2.6), we obtain

u* = wy + hUAL wuy + RPCAR U - (2.7)
Opq = A;q, ol + th;)q. 1 -+ hz.(ng;q, 2 — Ppq, OA:lik.2) Uyt ...
Ok = h® (0 — 1) (A, oti + BLAgsu: +..)  (p,g=1,2)

A:};i. 1wk + th?, stk 4 At (C;", 532 — B;j. 10,{. @)U +...=0 (2.8)
C?.srz“k =A; (% 1) + A* (5, @)

2
Ay = — - [csa (feH? — Krks) 4- s/ m*

Ap = (((esall — ciltpp) 05* — cumdg*] m* — cocsady* (Hm¥) +
aq* [(kPP - qu) T+m (”q — %p)]}
V= (01* + ki¥) 01> + (0% + ka*) 02*, m* =1 + %
(p#*q=1,2; j=1,2,3)
Furthermore, by appending the strain continuity equation to (2.8) /4/

Qj (%1 17) = Lj (mr 2‘5) it 2H3] (Kv T) = RJ' (31 m) (] = 1-1 21 3) (2.9)

and selecting the quantities of the strain components &, ® and %, T as unknowns, we will seek
the undamped solution of the system obtained in the form of asymptotic expansions

gy =D hle;,,,  w;=h" ;:]Oh"/’uj,, (es=w,%3=1,j=1,2,3) (2.10)

r=0

Now, substituting (2.10) into (2.8), (2.9) and equating the expression for k"2 to zero,
we obtain a system of recurrent equations in the functions ¢g;. and u;,

Li (6 @) =—A;,®%1), Q,.%1)=0 (G=1,23) (2.11)
Qi (% 1) =HR;,(e,0) etc. ({=r+4 r=20,1,23)

For instance, writing L, , (¢, ®) or tp,» 1s decoded thus

Ly, o(t, @) = kp*tq, » — (0™ + kp*) tp, . — (0% + 2k %) o,
tp,r = 2 (CGEP, rt CaBq, )
Determining the functions ¢g;, and %;, from (2.11), and then substituting (2.10) into

(2.7), we find the asymptotic expansion of the components of the shell internal state of stress
and strain. Taking account of (1.6), we obtain

Gpp == B my, 0 4+ K Emp, 1+ (Cmp, 2 Htp, 0 + L pp, 0 — Callss, o) ... (2.12)
Oy = h20vy + 28T + (20t + 0o + Py, o) + .-
ok = (£* — 1) (Hsk,0 + BVellge h+...),  we=R"2u} + "0y, 4.0
Up* =h"%uy, 0 + hlup, s + R ug, 2 — §(9p*us, 0 + Kpplip, 0 +
Spmug, )l + ...
ug* = h%s, 0 -+ A~"ug, 1 + R g0 - ... (p#E9=1,2)
Let us note that the problem of determining the middle surface displacements by means of

given strain components is solved in quadratures /4,5/, here the quantities 1u, , are found
in terms of the functions ;. and g ,,.
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Let us introduce the specific forces Tp, Sgp, N, and the moments Gy, Hyp originating on
the shell coordinate sections 2P = const (p %= ¢ =1, 2)
h

Aq S, Ow) VE; dt=Tpipe + Sopigo — Npiy = ph Z B2 (T 5, 1igo + Syp, rigo — N, rla) (2.13)
—h r=Q

h

4, S,, (O < ia) 1V gaq dt = (— 1)? (H ypipe + Goigo) = (— 1) ph 2 b2 (H o, rige + Gy, igo)
— r=0

Here o) is the stress vector on the surface z” = const, and iy = (ip) [t=- Substituting
(2.12) into (2.13), we obtain
, 2
Ty = 2tp, = coam,* (cal — kqq) (2.14)

- L@ 4
S19, r + So1, » == b, = csamm,*
4 2

H1277=H217r=_3‘T11 prrz_TmP,r'
8
Np,r=— Tfsap*mr* = (fo/cs) 0% (G1, » + G, ;)
Si‘l,r—Smyrz(ka'—kﬂ) H‘Zlyr + m(Glyr'—G% 'r) (2.15)

(p+¢=1,2; r=0,1,2,3)

Eliminating the quantities ¢, ,, w, and my ,, t, from (2.11) by using (2.14) we cbtain

(6,,* + kp*) Tpa r kp*qu »+ (aq* + kq*) Spqy r T kq*‘yqpv rt (2.16)
prpr,T ‘*:‘quyr=0

buly, o+ keeTa, p +m(S1e,» + Sa1, ) — (0* + E*) Ny, —
(0o* 4 ky*) N, , =0

kp¥Gg, » — (0p* — kp*) Gy, + (0g* ~ 2k ¥ Hoy, p -~ Ny, , =V

p+=qg=1.2, r=0,1,23)

2"7H21, P kllGl, r— k22G2,r -~ (felcs) H (le r Gy ) =0

The first six equations from (2.15) and (2.16) agree in form with the equilibrium equa-
tions of general shell theory /4/. Hence, (2.14) should be considered as an equation of state.

It can be shown that the internal state of stress described by the relationships (2.12)—
(2.16) is the sum of membrane and purely couple-stress states.

3. Simple edge effect. By using the system of local coordinates n,s, ! we seek the
solution of (2.1) localized in the boundary layer, for which the following asymptotic relat-
ionships are characteristic

dpu; = O (u;/h'P), 8,0; = O (0;/k’P) (p = 1, 2; v, = Yo, v, = 0) (3.1)
(0, = 8ldn, 3, = 3ids)

Estimating the orders of the differential operators applied to the displacements u; in
the expansions (2.6), it can be established that the expansions (2.6)— (2.8) hold also for
the solution possessing the property (3.1). As is known /6/, the system (2.1) reduces to one
constitutive eguation by using the stress function in the case of circular cylindrical and
spherical shells. For shells of arbitrary shape an asymptotic analog of the stress function,
the function @z, is successfully obtained. We set

up = Mypps + @p Uy = Masqs (p7%=g=1,2) (3.2)
My = M3y + Xp,1d* + Xpsdida + ... + Xp,6

dzmdlk = dlkd2m = A,"9,"0.F

Mag= Mg* 4 Y 1d® + Yodi2dy -+ ... + Vg,

Mag* = x (di* + 2d1% dy® - dy?)

Mip= (H — Fkygl2) > — cam dy dp?+ (Cash pp— Whgq) g2 dpp + com d®

Here X, , and Y, (r=1,2,...,6;m=1,2,... 10) are functions toc be determined, My* are
cofactors to the elements a;; of the determinant det]|a;;| (a;; = Ag;,1) in which the symbols 4,
and 0, are considered as numbers.
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Substituting (3.2) into (2.8), we obtain

AL Margs + A5 19p + 13 (CF e Manps + €L gugp) + ... =0 (3.3)
(] =1, 2: 3)

(summation over repeated superscript p from 1 to 2).
Because of the selection of Mg* the operators Agj,,Ma,\. have the form

.
Ay My= D aldldy  (4r<4 =123

,r=0
Now, having the functions X, , satisfying the conditions

)
= =af =l =al =aif =0 (=12
at our disposal, we use the arbitrariness of the functions Y, , so that all the remaining co-

efficients ¢, (I + r<(4) would vanish for circular cylindrical and spherical shells.
We hence find the quantities X, ,, Y»n and g, some of which are presented below

X1, 1= kp* (Cosky, — %k — (caks + %H),,  Yi=2uk.*, 3.4
Yg = 2% (Ag)st
X, == Ao (csH + fsko)s — Sumy, Ay \ My = 2c5 {k2dy* —

G dyS dy -+ (2knkes + 4m?) di? do? — bkym dyde® 4 kP dst +

2 [kn*ks2 — 4, (mks)s'] dl3 + 2 [(Aﬂknks + 2‘427"'2)5’ "{" (mks)n’ +

2]55 (mn’ —_ AQHSI)] dlg dg ~’- .. }

Furthermore, following /7/ and taking account of (3.4), we expand the coefficients in
(3.3) in a power series in the coordinate n and we stretch the scale
n= h‘/’g, 61 = h‘ll’alg, 61“ = 6/8&, Ag =1 h"’gkg + - (3. 5)
kso=ksln=0r Mo ="}n=0s kg =k,*|ney, etc.

¥inally, by seeking the unknowns ¢; in the form of the expansions

Gp = b D Wy, Ga=h X PG,  (p=1.2) (3.6)
r=0 r=0

and substituting (3.6) into {3.2), (3.3) and (2.7}, we obtain

Bl {— Byopio + (fsHo — koncsf3) B1o pael +... =10 (3.7

Il [— F10°Pe0 + Lg WC2m0‘3107(P30J +...=0 (@=3(1—+9

R (%5020 - B10®) oo -+ B2 {{cs0® 000t + 010°) a1+ Akl P+
2¢® [Ehego (Fko/OnYp Or0* — 2t omadi®s +
(keok s0® — (Mokso)s’) 816%] @ae} + ... =0

Opp = — B Van 0105 a0 — 722 {cgl (%D10% P + Casky010%Pn0) + (3.8)
cskegk 0010330l +- - - .

Oy = — B2 (cok 0010 + %EC4010%) Qa0 + A {— el (c1010°pm +
C52kg8105(P30) + 2¢5 [2mo810*@2 — § (Ok,/0n)o Ire* —
(kghepo — 2 {8k ]on)o) 810%] @on — 2esksoBio* P} + - - -

o= {{>—1) {cs [(‘KHo = Ksof 2) 010° — '%- %‘Qams} [T S }

Ops = (2 — 1) [A:2%%310" a0 + 2% (010" 9ar + kg10°pso) + .+ . -]

Ops = B2 (046 10%0, (ke sotpan) — LF10°02 0] + - . -

Oga = (L% = 1} @%*010°02psp + - - ),

Un* = f?,"‘l" [(XHQ — ksof?-} 3103 and u@m“] Pao + -

u.s* = ]l"l/‘Cgmoams(Pao 4+ e,

uz* = K B0 pso + hP (8108 a1 + ZgProtpao) + - - .

For small h we find from (3.7)

G0 = Por Qo1 =Py — & {fbe)d + (B, + Ep) 9l + gzgiam‘-bsy (3.9}
= mulkso

by = ’5[7‘*2?-‘5 [M: — Qrfy) cos vE + M sin vE] exp (vE),
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y=V cky/2
Ey = (4koo) " [(0k;[0n)o + | (8Fs[05)o].
E,= (2ko)™ [4 (aksldn)o + kgknﬁl

where My = My (s), Qr = @ (s) are functions determined from the boundary conditions on [,.

4. Boundary-layer type of state of stress and strain. We shall seek the de-
caying solution of the system (2.1) that is characterized by the asymptotic relations (3.1)
for v, =1, v, = 0. To this end, we expand the coefficients of {(l.l) in a power series in n
and [ and stretch the scale. We finally obtain

¥ — 013 + awg* - hFy 4 ... =0, (4.1)
(Ue*), — Oo3 + AFy = ... =0

(Us*) + fa03s + CaBrv* + hFy + .. =),

(033):" + 011013 + hFg+ ... =0

(O13) + 4011033 + 4%01 "1 * - hFy 4 ... =0,

(Oa3),” + 011’0 + AFs - ... =0

Ora=0nuWe* L AF, + ...,  Oun ==Cs0a3 + 4001 * + hFg + ... (4.2)
Ogp = 1033 + 2c40nin* + BFg + ..., v¥=u*h (j=1,2,3)

n=hp. O1==h""911, 0O11=080p, F1=kFy(*+ (durs*) and so on.

Seeking the unknowns v,-* and o03; in the form of the series
o= D WS, o= D ke, (=123
r=0 r=0

and integrating (4.1) under the initial conditions
k3
Wok=o=vi=ujlh,  03,0lcm0=0j VUl lg=0=03j, 1 |c= =10
k=1,2,..)
we successively find vlr and a4,k =0,1,2,..)

u b = 1, (w z cos z — f, sin z) 6,/8,, — Y,x z sin 264/0,; + (4.3)
(cos z — %z sin z)v, + (f,sinz — uzcosz) vy + hof, 4. . .
ulh = sin 20,00, + cos zv, + hv¥, + ...

us*lh = — Y,uz sin 20,/d,; — Y/, (xz cos z + f, sin 2) 04/8;; —
(f5 sin 2 + =z cos z) v, -+ (cos z + wzsin z) vg + hvgy 4. ..
On3 = (c0os z —uz sin z) 0, — (fy sinz + %z cos z) 03 — (4.4)

2% (sin z -+ z cos 2)8;,0; -+ 2%z sin 20,03 + hoyy,, ...
Os3 = €08 20, — 0y 5in 2wy -+ hog, | + -
O35 = (f; sin z — %z cos 2) 6, + (cos z + wz sinz) 63 +
2uz sin 28,0, + 2x (2 coS 2z — sin 2)d,,v3 + hGgs, 1 -+ -

Taking account of (4.3) and (4.4), we find from (4.2)

Onn = (fs Sin 2 + %2 c0s 2) 6, + (¢4 €OS 2 — %z sin z) 03 + (4.5)
2% (2 cos z — z sinz)dyv; — 2% (sinz 4 2 €08 2) Gy V3 + ACu, 1 L ...

G5 = €4 (sin 20, 4 cos 204 + 20;,0052 vy ~20;; $in 2v3) + hOss,y + ...
Ons = SiD 2 0y + 8, €08 2v3 + hoys 1 + - (z = §0y1y)

Moreover, let the unknowns v; and 0; be determined by the asymptotic expansions

b= kz Rw, o= kzo Wilg, ., o= h"! ;\Zo JLIE (4.6)
—0 = p==

r=1,3 j=1,2,3)

We note that since the stress o,; of the simple edge effect is describedby a power series
in A'* and are used in satisfying the boundary conditions on I',, then the asymptotic expan-
sions (2.10) and (4.6) should also have the same configuration.

Now, taking account of (4.4) and (4.6), we obtain the principal boundary-layer equations
from (2.1)
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(COS 611 —_ ”611 sin 611) O1,¢ + 2%6112 sin anUg, 1= 0 (4. 7)
(f4 sin 811 — 'Kau Ccos 811) 01, - 2% (6112003 611 —_ 611 sin au) Vs, = 0

(fasin 811 + %011 008 011) 63,1 + 2x (13 8in 8y + 0112 c0s Apy) vy, =0

(c0s 84y -+ %011 8in O1y) O3, ; + 280142 sin dyyvy, ; = 0

€08 01102,;=0, Onsinduvy, ;=0 (=0,1)

Determining the unknowns ¢;,; and v;; from (4.7), and then substituting (4.6) into (4.3)—
(4.5), we obtain asymptotic expansions of the boundary-layer type components of the state of
stress and strain

oy=3 J ol o.=h"3 Do, (=13 ij£r2) (4.8)
I=0k=1 =0 k=1
uF=h 2 2’ h{/gugf)l’ o = Z 2 hz/zu(k)
1=0 k=1 1= k=1
o, 1= [CE 1 (F1P — 2cos z,0) + D 1 (Y1 + 25in 6, 1)} +
2251 (mo cos Tl — du sin k) AF ;. o) = AF ,sin xkg

Ug:s), sn1=AF s sin g -+ BY, jcos yil + Y AF, {cos Zpl[Rnozn({E—1)4
3kgo/zy) + sin 2yl [(kgo + 2kn0) L — kg (0 + S/zi)]}s

Gg) = Ak 108 x,,g

0%, 1= co (CE " — DE W) — 28, cos :,L4% 4,

Ak 1 = Ay, 1 €XD (Txp)

0§'§’1 = g (CF V' 4 DE W) 4 2moai’ cos it AF 1,

B, = By, exp (yxp)

Ug? o4l = A;rk, 241 COS Tl — Bl’lt‘. isin yrb +- 1/2A;(:, {eosxl [(kso+2knn)§—
Pkg] -+ aykno (1 — 0¥ sin xy )},

o,,.s 1= 2¢4 (D;r 1 8in 6, — Ch 1cos L) +
225 (2vmyp cos 1L + Bz sinxil) AF uikg =7y A% sin oy

u§ = 25 AF, g sin 2l + yi'BE jcos yil -
Yo AF | {kpo (62 — 1) cos z3L — okg sin 2L/ x5
koo (CsinayL/ay 4 3 cos x;§/x ™)

ud = CF 7' e — sin zt) — DE O (kWY 4 cos 8,0) -+
(1 — 2v) mezic® sin ;L Ax.

u® = CF 2t VP — cos z,0) + DE O WV + sin0,7) -+
22 [(1 — 2v)ymyeos oyt — dgsin ) Af 1 (1=0,1)

WD = z,Lsin 70 + sin?zycos 2,8, TP =W /far,

CE 1= Cy, 16xp (zp)[c0s 2;

P = 0,2 cos B,L — cos?8,sin 0L, O, = — a¥Paz,

DY ;= Dy, exp (Oyp)/5in 6,

Here the numbers &, ¥, %, 0x are nonzero roots of the appropriate equations
cosz=0, siny=0,sin2z =—2z sin20 =20 (>0,..+ Re 6, > 0)

and the functions Ay; = Ay, ;(s), ..., Dy, ;= Dy ,(s) are to be determined from the boundary condi-
tions on T,.

In a first approximation the relations (4.8) agree with the homogeneous solutions obtain-
ed in slab theory /8,9/, and for n =0 the following hold

1 1
So,m,mc Dydg=0, §oR,(Hdc=0, §o®,.Bar=0 (4.9)
—1 ~1

1
Soﬁ‘;.z(c,D)dc=0, Lo (€, D)L =0 (1=0,4; k=1,2,...)
-1 -1

Here, for instance, only that part of the expression 0( )1 which is proportional to the func-
tions Cg,; and Dy,; is denoted by o,m.l (C, D).

It follows from (4.9) that the system of stresses originating on the boundary T, is self-
equilibrated over the shell thickness in a first approximation, and therefore, the state of
stre~~ of boundary-layer type is a Saint-Venant edge effect.
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5. Satisfaction of the boundary conditions. we examine the problem of complete
reduction of the system of external stresses from the endface surface I';. We seek the general
solution of this problem in the form of a sum of the internal state of stress and strain (1),
the simple shell edge effect (2) and the Saint-Venant type boundary layers (3)

ut =tV L a1 oy = o 4 o (5.1)
The stresses and displacements in (5.1) are given by (2.12), {(3.8) and (4.8). By virtue
of (5.1) the boundary conditions (2.2) become

Unp[n=0=h>1(’9m.o + h"/’GEzpd + 0%p,:+ s =qp o+ R gy 4 (5.2)

Ops |nmo == R20pg,1 + 005 0 oo =G, 0 - g1 - .
(‘]k = D krivg, r>
=0

Hence, equating the expressions for k™ and A": to zero, we find

0o=0, Mo=GCp ol  Ar o= — 3zi*sinzxH g o lneo (5.3)
My = {Gp. 1 + 60, (fGro/7) + [6E; — 24E, — (2 + v) kgl Gpo/ V) Inmo
Ay =3z sinay[—Hgy, (v — 18, (Gp, o/ V)] Jamp (=1, 2, ... 00)

Moreover, taking account of (4.9) and integrating (5.2) with respect to {, we obtain a

system of boundary conditions for solutions of the type (1) and (2)

1

S (O, 24r — 5, 1) dG = 0,
-1

(i=1,2,3r=0,1,2,...)

Lo

;(O—gm,zﬂ_‘{h\r)dg:() (5.4)
1

Hence, for r =0 it follows

(T, o= N okeflso — (m kglhso — mo?+ 2k 05 4 022) (G, ok s0)} lnmo= (5.5)
To* — No*kg,kso (T;;,(): Tn,o — mHsn, 05 N;,' [\ Nn,O" 02Hsm°)

{S.;n,O + moGp, 0+ s [Nn, ofkso + (1 fheso -+ 2f8) (G, ofks0)] —
kg0s (G, of K 50)} lnmo = So* + 0a(Na® i) (Sem, 0= S0 — ksH 4ny0)

Q1= [(T1Ey — 35y — 3kg) Gy 0 + 102 (fGry0) + Ny o] fnmo — No*
1 1 1

To¥= Q G,0d5. So¥= S g2, 0ds,  No*= — S g3, 0 4G

ity 1 —1

Here T:l,o, Sin, 00 Nln‘o are reduced edge forces /4/. For determination of functions By, Cgo, Do in
(4.8), we use the Lagrange principle of possible displacements. Since homogeneous solutions
satisfy the equilibrium equations and boundary conditions on T, then the variational equa-
tion takes the form

S (Unn(sun* + Unsaus* + Unn's'lrs*) do = S(qlsun* + 425"5* + 1135%*) dO’ (5.6)
I T
do == {(1 — kg of)? + my22: dids

varying the functions By ,(k = 1,2, ... o), we obtain from (5.6)

1 n
* - 3
By, 0= S gz, 0 cos YL db + Byi? cos yy [(kno — Tk5°> Hpo +mo(G,, 0 — vGy,0) Culcm] lnzo (5.7)
=1
As is seen from (4.8), the stresses GSZ‘})‘,, and oﬁfa’,,(l = 0, 1) are proportional to the coef-
ficient % (0.5 <% <(1). By varying the function Ce and Dy, and obtaining a system of linear
algebraic equations from (5.6) for x = 0.5, this permits construction of an appropriate system

for an arbitrary value of x. We have

Cho (1 — %’ sin? zk> '+ 8 Z C, 033 (5in? 24 — sin?25) (2 — Zm) 3 (2 + 20) P = (5.8)
m=1

mzk

1
(2xzy cos zk)"{ B[ql, o (12 W§ — cos L) -+
—1
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gs,0 (125 — sin 2,01 df 4 3 kg0 (v, 0 — G, 0) CalCse + 8moH . o] 26° $iD 24} Inmo

Dyo ( 1— _g- cosze,,) 04 8 Z D, o040, (c0s2 8, — c0520,,) (B — 0,)7° (8 + 0,,)2 =

m=1
msk

1

(20 5in 8™ { { 11,0 (/2 ¥40 1 sin 6,7) —
-1
3,0 (V2 + cos BL)] d — BNo* cos™30, —

120,H ., o8y cos O, Z M et — ekz)-Z} | (k=1,2,...0c0)

=1 n=0

The systems (5.8) encountered in slab theory are always solvable, and the method of truncation
/8,9/ is used for their solution.

Let us indicate the sequence of seeking solutions of the type (1), (2) and (3). When the
forces T¢*, So*, No* on T, are not simultaneously zero, we find firstly the quantities T, ¢ Sgp, os
Ny, o) Gp, 00 Hat, 0 characterizing the internal state of stress by integrating the differential
equations (2.16) in combination with the boundary conditions (5.5). Then by using the bound-
ary conditions (5.3) and (5.5) as well as the infinite systems (5.7) and (5.8), we determine
the functions My, @; and the functions 4y, ¢, Bk o0 Ck, 00 Dro (k=1,2,...0) comprising the arbitrar-
iness of the solutions of the simple edge effect equations and the boundary-layer equations,
respectively. If T* = S§;* = N* = on the shell edge, then as follows from (2.16), (5.3)
and (5.5), the quantities Ty, Sgp 0o Vp,or Gp,or Hap 00 My, Q) must be set equal to zero and the
computation must be started with the boundary-layer, i.e., with the solution of the systems
(5.7, (5.8).

It is expedient to consider the relations (2.12)— (2.16) and (3.7)— (3.9) resulting from
the solution of a three-dimensional problem of elasticity theory together with the boundary
conditions (5.3)— (5.5) as a system of "two-dimensional” equations of the refined applied theory
intended to reduce the stress from the endface surface TI,. By assuming a boundary-layer type
solution (4.8) here, the boundary conditions on I, can be satisfied more exactly than in the
integral sense. We note that the results of this paper are valid even for shells of zero and
negative curvature if only the contour I' bounding the middle surface of these shells has a
non-asymptotic direction throughout.
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